If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25t^2+46t-2=0
a = 25; b = 46; c = -2;
Δ = b2-4ac
Δ = 462-4·25·(-2)
Δ = 2316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2316}=\sqrt{4*579}=\sqrt{4}*\sqrt{579}=2\sqrt{579}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-2\sqrt{579}}{2*25}=\frac{-46-2\sqrt{579}}{50} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+2\sqrt{579}}{2*25}=\frac{-46+2\sqrt{579}}{50} $
| 3w/15=4/5 | | 16m+35-11m=593 | | (1/6)×6z=12×(1/6) | | 1000-100-10=a | | 11x-14=10+10x | | -2÷x=-5-5x | | -6+3z=7+3z | | 4+2.2x=1-2.8x | | 2y+8=9=27 | | -16=-2n-6n | | 1000-(100-10)=x | | -21=k-17 | | 6=|2x-9| | | -2/x=-5-5x | | p-0.29=28.76 | | 3x=8=14 | | -7+4x=-x+48 | | -2(3x+4)=2-(x-2) | | q+1=-6q-3+8q+4 | | 3=4(x+7)-10 | | 1.29x+10=34+9.9x | | 4x+3=-2+4 | | 4=20(w/150) | | -7x+-35=21 | | 2(m=3)=18 | | -5x-9=x-57 | | -11x-0.08+7x=16 | | 64–6x=9x+100 | | 2.4x+8.3=47.8 | | (x-3)^2=x^2+2x+1 | | -5/2u+2=-4/5u-1/2 | | -8-4n=56 |